skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fitzpatrick, Garret"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Frequency phase transfer (FPT) is a technique designed to increase coherence and sensitivity in radio interferometry by making use of the nondispersive nature of the troposphere to calibrate high-frequency data using solutions derived at a lower frequency. While the Korean very long baseline interferometry (VLBI) network has pioneered the use of simultaneous multiband systems for routine FPT up to an observing frequency of 130 GHz, this technique remains largely untested in the (sub)millimeter regime. A recent effort has been made to outfit dual-band systems at (sub)millimeter observatories participating in the Event Horizon Telescope (EHT) and to test the feasibility and performance of FPT up to the observing frequencies of the EHT. We present the results of simultaneous dual-frequency observations conducted in 2024 January on an Earth-sized baseline between the IRAM 30-m in Spain and the James Clerk Maxwell Telescope (JCMT) and Submillimeter Array (SMA) in Hawai‘i. We performed simultaneous observations at 86 and 215 GHz on the bright sources J0958+6533 and OJ 287, with strong detections obtained at both frequencies. We observe a strong correlation between the interferometric phases at the two frequencies, matching the trend expected for atmospheric fluctuations and demonstrating for the first time the viability of FPT for VLBI at a wavelength of  ∼1 millimeter. We show that the application of FPT systematically increases the 215 GHz coherence on all averaging timescales. In addition, the use of the colocated JCMT and SMA as a single dual-frequency station demonstrates the feasibility of paired-antenna FPT for VLBI for the first time, with implications for future array capabilities (e.g., Atacama Large Millimeter/submillimeter Array subarraying and ngVLA calibration strategies). 
    more » « less
    Free, publicly-accessible full text available March 26, 2026
  2. We present a case for significantly enhancing the utility and efficiency of the ngEHT by incorporating an additional 86 GHz observing band. In contrast to 230 or 345 GHz, weather conditions at the ngEHT sites are reliably good enough for 86 GHz to enable year-round observations. Multi-frequency imaging that incorporates 86 GHz observations would sufficiently augment the (u,v) coverage at 230 and 345 GHz to permit detection of the M87 jet structure without requiring EHT stations to join the array. The general calibration and sensitivity of the ngEHT would also be enhanced by leveraging frequency phase transfer techniques, whereby simultaneous observations at 86 GHz and higher-frequency bands have the potential to increase the effective coherence times from a few seconds to tens of minutes. When observation at the higher frequencies is not possible, there are opportunities for standalone 86 GHz science, such as studies of black hole jets and spectral lines. Finally, the addition of 86 GHz capabilities to the ngEHT would enable it to integrate into a community of other VLBI facilities—such as the GMVA and ngVLA—that are expected to operate at 86 GHz but not at the higher ngEHT observing frequencies. 
    more » « less
  3. Coyle, Laura E; Perrin, Marshall D; Matsuura, Shuji (Ed.)
  4. The Event Horizon Telescope (EHT) has led to the first images of a supermassive black hole, revealing the central compact objects in the elliptical galaxy M87 and the Milky Way. Proposed upgrades to this array through the next-generation EHT (ngEHT) program would sharply improve the angular resolution, dynamic range, and temporal coverage of the existing EHT observations. These improvements will uniquely enable a wealth of transformative new discoveries related to black hole science, extending from event-horizon-scale studies of strong gravity to studies of explosive transients to the cosmological growth and influence of supermassive black holes. Here, we present the key science goals for the ngEHT and their associated instrument requirements, both of which have been formulated through a multi-year international effort involving hundreds of scientists worldwide. 
    more » « less